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Abstract
Achieving continuous maritime domain awareness is an essential requirement of national 
defence and security. Maritime domain awareness is the understanding of activities 
that impact maritime security, safety, economy or environment. It enables quick threat 
identification, informed decision making and effective action by responding units. The 
core component of maritime domain awareness, persistent surveillance, involves multiple 
systems collaborating in order to detect, classify, identify, track and assess situations within 
an area of interest. In this white paper, we propose a solution to improve maritime domain 
awareness based on a sensor exploitation architecture capable of incorporating a vast array 
of data sources. The architecture addresses persistent surveillance challenges by combining 
well established concepts of information fusion with novel approaches to the problem. We 
first introduce the conventional techniques and their drawbacks, discuss the contemporary 
data ecosystem and present a potential solution which learns to closely match the dynamic 
internal structures present in the data. This solution, developed and patented by Larus 
Technologies, performs behavior analysis through predictive modeling, is capable of dealing 
with heterogeneous (i.e. multi-source, multi-sensor) data, is automated yet human-centric 
and resolves many of the challenges presented in maritime domain awareness.

Maritime Domain Awareness 
In a world where more than 40% of the population lives within 100 kilometers of a coast 
[1] and where traditional and asymmetric threats to physical and cyber infrastructures and 
borders continue to rise each year, countries are becoming increasingly aware of the gaps 
that exist in their ability to achieve persistent surveillance and continuous awareness of their 
maritime domains. Persistent surveillance is an essential component in a global system to 
ensure Territorial Security. The latter is defined as the prevention, detection and response 
to unauthorized persons and/or goods crossing a physical or virtual perimeter, making this 
problem a security concern of individual, corporate, national and international scope.

In a vast and mostly uninhabited country such as Canada, which borders the Atlantic, Pacific 
and Arctic oceans, a major sector of Territorial Security is Maritime Domain Awareness 
(MDA), which provides awareness of potential threats from maritime approaches and cueing 
to military and interagency responders. MDA is defined as the situational understanding of 
activities that impact maritime security, safety, economy or environment [2]. MDA involves 
a system of people, processes and technological tools that discover, sense, analyse and 
react to events and perform physical and virtual defence of the country’s borders. It includes 
the capture and storage of domain knowledge obtained along with the actions, effects and 
outcomes for use in planning future surveillance operations. The outcome expected from 
MDA is the effective tasking of joint and interagency forces to respond to offensive/illegal 
activities, disasters and rescue scenarios in the maritime domain. This complex process is 
depicted in Figure 1.
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In Canada, MDA requires the surveying of 10 million km2 across the Pacific, Atlantic and 
Arctic oceans, over 200 thousand km of coastline and 5 million km2 of Arctic landmass 
(refer to Figure 2) and the inherent challenge of monitoring and controlling the vast amount 
of data and information that will be generated. This activity falls within the jurisdiction of 
the Marine Security Operations Centres (MSOCs) and the Canadian Forces’ (CF) Regional 
Joint Operations Centres (RJOCs). These organizations are responsible to detect and 
assess Canadian marine security threats and provide support to responders. Threats 
include individuals, vessels, cargo and infrastructure involved in any activity that could 
pose an injury to the safety, security, environment or economy of Canada.

At present, there are many loosely connected surveillance and exploitation systems 
used to monitor maritime areas resulting in the existing disjointed maritime surveillance 
architecture. These intra-connected (i.e. linking the sensors that make up a surveillance 
system) and inter-connected (i.e. linking the surveillance systems themselves) systems 
have been both inflexible and expensive to setup while not being interoperable from 
the start (i.e. knowledge sharing between authorized users and systems is not a design 
consideration). 

Figure 1. A model of maritime domain awareness



October 2018
Larus Technologies Corporation

Page 4 of 18

Additionally, operators and analysts have been overwhelmed by the tide of incoming 
data, including sensor outputs, databases, reports and other sources of information. This 
situation has led to operator/analyst fatigue, overload, stress and inattention which, in 
turn, have led to human errors. We have seen that on a limited basis, surveillance solutions 
have been effective, particularly where the regions of interest were well delineated, data 
sources structured and precise, events-of-interest few and far between, and response 
requirements neither time-critical nor calculated. However, this level of performance is 
not sustainable over time and on a global scale. Hence, any proposed solution to these 
challenges will need to feature continuous awareness of the environment unconstrained by 
data parameters or geographical boundaries, i.e. persistent surveillance.

Persistent Surveillance
To enable effective continuous awareness, threat mitigation and response to territorial 
breaches, persistent surveillance is needed and must be instituted in a systematic 
way. Persistent surveillance systems incorporate multiple collection, exploitation and 
dissemination capabilities that cooperatively detect, classify, identify, track, corroborate 
and assess situations within maritime areas. This cooperative approach has two significant 
positive effects: (i) it permits the creation of fused information and intelligence products for 
use by decision and policy makers and (ii) it results in effectiveness and efficiency benefits 
due to the systems being coordinated, widely dispersed, remotely controlled and intelligent.

Figure 2. Canada’s areas of responsibility and surveillance zones (extracted from [3])
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Looking more closely at the Canadian maritime surveillance challenge, the Arctic has 
been the subject of much discussion in the past few years. As Chair of the Arctic Council 
back in 2013 Canada led the advance of Arctic foreign policy and strongly promoted 
Canadian Northern interests [4]. The Canadian Northern strategy includes MDA, 
which is central to two of its priorities, namely: (i) securing international recognition 
for the full extent of our continental shelf and (ii) addressing Arctic governance and 
related emerging issues, such as public safety. MDA solutions that are in the works to 
mitigate Arctic MDA challenges are the CF Aurora patrol aircraft, the development of 
unmanned aerial vehicle (UAV) platforms, and introduction in 2011 of the Polar Epsilon 
RADARSAT-2 capability [5],a space-based radar that augments surveillance of Canada’s 
Arctic and maritime approaches. Within the Polar Epsilon context, MDA is sequentially 
defined as Detect → Classify → Identify → Track → Intent [6]. Future efforts in this 
direction will concentrate on the “Intent” phase, including the development of additional 
exploitation and assessment capabilities, as well as better utilization of the upcoming 
RADARSAT Constellation Mission (RCM) which is scheduled for launch in 2018 and will 
initially include three satellites with capacity to support up to six satellites within the 
constellation (see Figure 3). RCM’s three main uses will be maritime surveillance, disaster 
management and ecosystem monitoring. RCM recently received Government approval to 
proceed to its next and final stage of development [7].

The Polar Epsilon, RADARSAT-2 and RCM systems offer one of the best opportunities 
to demonstrate enhanced intra and inter connection within and between MDA systems 
needed to create a truly persistent surveillance capability for Canada.

Figure 3. RCM’s three satellites (Credit: MacDonald, Dettwiler and Associates Ltd.)
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Data Sources
There are many potential data sources that can be inputted into MDA. These sources fall 
in two categories: structured vs. unstructured (sometimes referred to as hard vs. soft) and 
sensed vs. unsensed. Structured or “hard” indicates data that is calibrated and precise such 
as data from imagery and radar sensors, while unstructured or “soft” indicates data that is 
uncalibrated and imprecise such as operator reports and open source intelligence available 
from internet web pages.

Hard data typically has a high observational sampling rate, is easily repeatable and 
provides attributes for single objects that allow system integrators to easily interface and 
extract features for further processing. Examples of hard MDA data sources include, but 
are not limited to:

•	 Radar-based (e.g. Synthetic Aperture Radar (SAR), Automatic Radar Plotting Aid 
(ARPA));

•	 Tracking-based (e.g. Ground Moving Target Indicator (GMTI), LINK 11/16/22, Over 
The Horizon (OTH)-Gold);

•	 Contact-based (e.g. Automatic Identification System (AIS), Global Positioning 
System (GPS), National Marine Electronics Association (NMEA 0183);

•	 Electro-Optical-based (e.g. day/night cameras, thermal sensors, infrared cameras);
•	 Environmental-based (e.g. temperature, humidity, pressure, precipitation, dew, 

smoke);
•	 Ranging-based (e.g. sonar, Light Detection and Ranging (LIDAR), laser);
•	 Orientation-based (e.g. magnetic compass, gyroscope); and
•	 Ontology-based (e.g. Wikipedia, Linking Open Data Project [8]).

Soft data provides relations between discovered entities but typically has a low 
observational sampling rate, is not easily repeatable and is less precise. This lack of 
structure forces system integrators to develop techniques for feature extraction and data 
source ingestion. Examples of soft MDA data sources include, but are not limited to:

•	 Meteorological-Oceanographic-based (e.g. weather prognosis/forecast reports and 
ocean features reports);

•	 Human observation-based (e.g. field reports, interviews, intelligence reports, logs);
•	 Map-based (e.g. navigational charts, climate maps);
•	 Web-based (e.g. web sites/pages, forums, Rich Site Summary (RSS) feeds); and
•	 Social-based (e.g. Facebook pages, Twitter feeds, personal blogs).

Issues with soft data sources that need to be better defined include source and report 
credibility, handling of uncertainty, natural language processing, fusion point delineation 
(i.e. determining which layer is the best for hard and soft data sources to be integrated) and 
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extraction/integration of contextual information – as soft data sources typically contain 
limited inferential knowledge. Hard-soft fusion has become a hot topic of research with 
possible solutions emerging that include the introduction of soft data exploitation within 
existing hard data fusion systems and the introduction of separate hard and soft streams at 
the ingestion point moving towards a harmonized situational understanding as the model 
gains experience.

Information Fusion
In order to accurately and effectively monitor a maritime area, the vast depth and breadth 
of incoming data must be interpreted and managed. Often referred to as the “Big Data 
Problem”, this state is best handled through the creation and maintenance of a real-time 
representative model of the world. Early solutions attempted to resolve this challenge 
through low level Information Fusion (IF) modules that used complex mathematical 
formulations or brute force number crunching; however, these solutions were inadequate 
because the complexity created by the 4-dimensional vector (variety, volume, velocity and 
veracity) quickly increased to the point where low level IF modules were overwhelmed. 
Low level IF was only capable of performing fusion when the data itself was limited in 
volume, involved few types (low variety), did not frequently change in mission-critical 
applications (low speed) and was somewhat trustworthy (high veracity).

As data complexity continued to grow exponentially researchers realized that at some 
point a new approach to the Big Data Problem would be needed. That point is today, where 
we see data expressed in terabytes when it comes to its size, in millions per second when 
it comes to speed, in tens, if not hundreds of types when it comes to diversity and in jams 
and interferences per second when it comes to trustworthiness. A new computational 
paradigm is required.

To address the challenges of Big Data, High-Level Information Fusion (HLIF), which in the 
Joint Director of Laboratories (JDL) model is defined as Fusion Level 2 and above (see 
Figure 4), has become the focus of research and development efforts. HLIF uses a mixture 
of numeric and symbolic reasoning techniques running in a distributed fashion, over a 
secure underlying backbone while presenting internal functionality through an efficient 
user interface. HLIF allows the system to learn from experience, capture human expertise 
and guidance, analyze contextually and semantically, lower computational complexity, 
automatically adapt to changing threats and situations, and display inferential chains and 
fusion processes graphically.
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Instead of attempting to keep up with the ever-increasing complexity of the 4-dimensional 
data streams, HLIF, aided by Artificial Intelligence (AI) allows one to model and therefore, 
better understand the data stream sources and better adapt to the dynamic structures that 
exist within the data. Thus, the way to create an effective persistent surveillance system 
is to apply HLIF techniques and algorithms to the problem. So, let us now take a look at 
algorithms, based on AI, that furnish an HLIF system with its reasoning, inference and 
learning capabilities, after which we will introduce the Larus HLIF solution.

Artificial Intelligence
Artificial Intelligence (AI) involves the design of computational architectures, methodologies 
and processes to address complex real-world problems using nature-inspired approaches. 
There are three main divisions within AI, namely Neural Networks (NNs), Evolutionary 
Computation (EC) and Fuzzy Systems (FS), with a few more emerging trends. NNs, EC, FS 
and distributed algorithms, which are included in the proposed HLIF solution of this paper, 
are introduced in the following paragraphs.

Neural Networks
The first theory on the fundamentals of neural computing was described by W. McCulloch 
& W. Pitts [10] in 1943 as all-or-none threshold device that made up the basic processing unit 
called a neuron. When a collection of neurons was connected via weighted links, the result 
was a Neural Network (NN), where the activity of one neuron was amplified or reduced 
and summed with the activity of other neurons to affect the behavior of yet another. NNs 
replaced the centrally executed, symbolic logical system of artificial intelligence (AI) and 
offered distributed processing based on sub-symbolic continuous activation levels. See 
Figure 5 for a depiction of one typical neuron as well as the generic architecture of a NN 
consisting of three layers: one input, (at least one) hidden and one output layer.

Figure 4. Information Fusion process within the JDL fusion framework (extracted from [9])
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Figure 5. Neural network generic architecture

There are many types of NNs that have been devised over the years; some of the most 
popular and useful ones include feed-forward networks, such as the Multilayer Perception 
(MLP) networks, where information flow is strictly unidirectional and recurrent networks, 
such as the Hopfield and NARX networks, where information is allowed to feed back to 
nodes in earlier layers of processing.

Evolutionary Computation
NNs were found to perform successful distributed processing; however, information flow 
between the subcomponents was completely fixed and predetermined by the network 
topology.  Along came evolutionary algorithms, loosely based on the interpreted operation 
of natural evolution, which essentially represented a distributed system of simple agents 
with no a priori designed communication flow pattern.  In the 1960s, Evolutionary 
Computation (EC) became the field of investigation into all evolutionary algorithms (EAs), 
including Evolution Strategies (ES), Evolutionary Programming (EP), Genetic Algorithms 
(GA) and Genetic Programming (GP).

Contingent on agents constructing new hypotheses about a solution to the problem, EC 
uses a random variation and recombination of the information about the old/previous 
hypothesis and performance-related evolutionary pressure which is biased towards 
retaining better hypotheses in the next cycle/generation of operation. EC is typically 
applied to problems where heuristic solutions are not available or generally lead to 
unsatisfactory results, where, through iterations of random variation and selection, the 
population can be made to converge asymptotically to optimal solutions (derived from 
schemata theory).
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Of particular importance due to their popularity, Genetic Algorithms (GAs) were search 
techniques modeled after natural selection, including the associated genetic operators 
and were developed by John Holland at the University of Michigan in the early 1970s [11].  
GAs are stochastic algorithms with very simple operators that involve random number 
generation, and copying and exchanging string structures.  The three major operators are: 
selection, mutation and crossover, with fitness evaluation acting as a control factor in the 
feedback path [12].  GAs fare well in large search space problems because better solutions 
tend to “grow old with time”.  See Figure 6 for a depiction of a GA process as well as a 
pictorial of the genetic pipeline present at the heart of every GA.

Fuzzy Systems
The mathematic notion of fuzzy sets was introduced by Lotfi Zadeh [13] in 1965 based on 
the concept of imprecision. Instead of presenting precise rules or instructions, the system 
was guided by fuzzy rules that described tasks more easily, such as, “when you are close 
to the door, open it”. This became the foundation of fuzzy computation which stipulated 
that the interaction between computers and humans can be greatly facilitated by the 
use of words. Fuzzy Systems (FS) or Fuzzy Inference Systems (FIS) became the physical 
manifestations of fuzzy computation.  

By crafting rules or describing data in terms that are easily understood, a system designer 
can simplify the design of a very complex system where measurements need only be 
described using fuzzy terms such as “very often” or “quite high” while membership 
functions can be intricately designed for fuzzification of crisp inputs.  The defuzzification of 
fuzzy output variables into crisp values uses methods such as the center of gravity or mean 
of maxima methods.  See Figure 7 for the typical process flow of a FS as well as a sample 
membership function which represents the degree of truth of an element to a particular 
fuzzy set.  For example, a value of 0 indicates that the element does not belong to the 
fuzzy set, a value of 1 indicates that the element fully belongs to the fuzzy set, and a value 
in between indicates that the element partially belongs to the fuzzy set.  This powerful 
concept aids in the processing of imprecise data in order to arrive at adaptive, yet rigorous, 
systems that yield human-assisted and interpretable solutions.

Figure 6. Genetic Algorithm process flow and the genetic pipeline
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Figure 7. Fuzzy System process flow and sample membership function

Distributed Algorithms
Recently, Distributed Artificial Intelligence (DAI) has become viable for certain 
applications due to reasons, including:

•	 It is costly to spend all your efforts on one entity;
•	 Problems are physically distributed;
•	 Problems are complex and require local points of view; and
•	 Systems must be able to adapt to environmental changes.

An example of a distributed algorithm is swarm intelligence [14], which includes “ant” 
algorithms, Particle Swarm Optimization (PSO) and diffusion search.  This method is based 
on the operation of a population of simple agents, each of which explores the space-possible 
solutions, until an overall solution emerges from the interactions between the agents.

Multi-agent systems (MAS) [15] consist of individual agents coordinating their activities 
and cooperating with each other to avoid duplication of effort as well as to exploit other 
agents’ capabilities.  MAS are typically applied to areas such as spacecraft control, 
social simulations, ecommerce and industrial systems management.  Distributed sensing 
and sensor networks are a major application area of multi-agent systems [16].  Finally, 
hierarchical networks are another type consisting of probabilistic learning networks that 
are used to deal with problems of uncertainty and complexity.  These are complex systems 
that are typically built by combining simpler parts.  Examples include Bayesian networks 
and Hidden Markov Models.

Finally, it is important to mention that there are two ways to extract regularities from 
presented patterns, namely (i) supervised learning, where networks are provided with 
quantitative information on their performance, the latter being used to adjust the weights 
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to achieve better performance and (ii) unsupervised learning, where no provision of 
feedback is provided to the network and the process is mostly based on an appropriately 
defined cost function which uses local interactions between the processing elements to 
arrive at a desired solution.

HLIF Capabilities
HLIF, which deals with fusion at JDL level 2 and above (refer back to Figure 4), has become the 
focus of recent research and development efforts to reduce the stress on surveillance operators/
analysts and the burden being placed on computational systems dealing with Big Data streams.

HLIF capabilities are continuing to evolve to alleviate the challenges presented by Big Data 
including (i) anomaly detection, a process by which patterns are detected in a given dataset 
that do not conform to a pre-defined typical behavior (e.g. outliers), (ii) trajectory prediction, 
a process by which future positions (i.e. states) and motions (i.e. trajectories) of an object 
are estimated, (iii) intent assessment, a process by which object behaviors are characterized 
based on  their purpose of action, and (iv) threat assessment, a process by which object 
behaviors are characterized based on the object’s capability, opportunity and intent.

Additionally, real-time adaptive learning becomes an imperative feature of any MDA 
solution deployed in the field.  Situational learning (shaping future responses to already 
seen situations based on human feedback) and procedural learning (minimizing the error 
between predicted and actual events) are two methods that enable a system to better 
understand its real-world dynamics.

Larus HLIF Architecture
Larus Technologies has developed a patent-pending HLIF architecture targeted as an 
MDA solution. The Larus HLIF architecture performs behavior analysis through predictive 
modeling, fuses heterogeneous (i.e. multi-source, multi-sensor) data and is automated yet 
human-centric.  While other HLIF solutions provide separate frameworks for sensing and 
acting, the Larus architecture allows for bidirectional in-network processing (i.e. sensing 
and acting are performed within a unified framework), makes applications data-centric and 
reduces the state-estimation errors by closely matching the world model to the real world.  
The Larus architecture can be summarized by the two-way relation shown in Figure 8.

Figure 8. Larus HLIF architecture based on real world state estimation
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Figure 9. Data flow overview

The Larus architecture is made up of perception, validation, expectation and action 
modules.  The architecture combines AI algorithms situated within a persistent surveillance 
environment to support decision makers by classifying, identifying, tracking and assessing 
targets.  The perception module, which is responsible for data consumption, processes 
and analyses sensor inputs extracted from data sources, including the environment.  The 
validation module, which is responsible for information consumption, performs multi-source 
multi-sensor data fusion to extract common patterns and parameters from heterogeneous 
data. The expectation module, which is responsible for decision support, diffuses 
commands to actual tasks through predictive modeling.  Finally, the action module, which 
is responsible for sensor tasking, provides effectors in the environment by performing 
tasks.  Each action changes the state of the environment, after which the entire cycle 
repeats.  This architecture includes a world model that represents the knowledge base 
attained by the system.  Figure 9 depicts the entire flow.

Larus Solution Background
The Larus Technologies HLIF architecture originates in the field of intelligent agent 
architectures.  Intelligent agent architectures define approaches to building intelligent 
systems, including the internal structures and operations of the agents.  Typically these 
architectures include proactive and reactive architectures.  Proactive agent architectures 
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are intuitive and easily decomposed into subsystems; however, they suffer from the 
problem of calculative rationality and usually are difficult to realize.  Reactive agent 
architectures are simple, economical and computationally tractable; however they suffer 
from the problems of having a short-term view and being difficult to implement when they 
contain many layers.

The novel retroactive agent architecture was designed and developed by Larus to combine 
and improve on both proactive and reactive characteristics within a Decision Support 
System (DSS).  In the retroactive architecture, an event in the environment occurs, causing 
momentum in a behavior to increase, which eventually causes a behavior to fire and react 
to the event by executing the behavior’s plan.  The events of importance are changes in 
the environmental features that the world model is concerned with; i.e. ones that conflict 
with its goals.  The reactive characteristic of the retroactive architecture involves knowing 
which behavior to fire through momentum resolution, while the proactive characteristic 
involves knowing how to behave through plan execution.

The retroactive HLIF architecture builds on the importance of synaptic feedback, 
where, for example, every sensed event elicits a reaction by the DSS onto the world to 
handle the event, a retro-assertion (i.e. future validation) onto the DSS’ world model to 
compartmentalize the new or old data, and subsequently a possible pro-action onto the 

Figure 10. Retroactive agent architecture
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Figure 11. Application of HLIF architecture to a maritime domain scenario

world again to seek more information about the event.  Larus has identified six synaptic 
acts, namely reactions, pro-actions, retroactions, reassertions, pro-assertions and retro-
assertions, which if observed from the outside, ascribe intelligent behavior to the DSS.  To 
better visualize the synaptic acts, refer to Figure 10.  A retroactive architecture allows the 
DSS to learn over time, solving the short-term view of reactive systems, and to respond in 
real-time to world events, solving the calculative rationality of proactive systems.

Larus HLIF Architecture Scenario
The Larus HLIF architecture is presented in the context of the MDA scenario shown in 
Figure 11. In this scenario, the Larus HLIF architecture automatically fuses multiple hard 
and soft data sources to determine location, destination and intent of a target vessel 
(i.e. Level 2 information fusion).  The data sources are then used to refine the situational 
understanding by identifying potential consequences and postulating courses of action 
(i.e. Level 3 information fusion).   At the highest information fusion level (i.e. Level 4), 
the architecture offers response options to the decision maker who then orders units to 
respond and tasks sensors and sources to further refine situational understanding and 
support those responding units.

The fusion process described in Figure 11 operates over a wide area of interest continuously 
assessing information, highlighting anomalies, refining situational understanding and 
learning to improve its own performance over time.
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Conclusions
Continuous Maritime Domain Awareness provides situational understanding and 
support to decision makers through the ingestion, processing and presentation of a 
vast array and volume of data about the maritime environment, objects and actors in 
that environment and intentions of those actors.  To be successful, continuous Maritime 
Domain Awareness requires the collaboration of multiple systems to provide persistent 
detection, classification, identification, tracking and assessment of situations within 
the maritime domain.  The Larus Maritime Domain Awareness solution, through its 
retroactive HLIF agent architecture, improves on existing persistent surveillance methods 
by generating understanding of the objects, actions and intentions.  It adds automation 
to the surveillance process by fusing a multitude of hard and soft data sources through 
Artificial Intelligence and Machine Learning algorithms and behavior analysis into a 
Decision Support System.  The Larus solution learns and continuously improves upon itself 
in real-time to provide true and timely information on maritime activities, reduce operator 
workload, provide accurate and reliable world model and enable interoperability and 
knowledge sharing.
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